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Notion of the renormalization group dynamical system, the self-avoiding fixed
point and the critical trajectory are mathematically defined for the set of self-
avoiding walks on the d-dimensional pre-Sierpiński gaskets (n-simplex lattices),
such that their existence imply the asymptotic behaviors of the self-avoiding
walks, such as the existence of the limit distributions of the scaled path lengths of
‘‘canonical ensemble,’’ the connectivity constant (exponential growth of path
numbers with respect to the length), and the exponent for mean square displa-
cement. We apply the so defined framework to prove these asymptotic behaviors
of the restricted self-avoiding walks on the 4-dimensional pre-Sierpiński gasket.

KEY WORDS: Renormalization group; self-avoiding walk; fractals; Sierpiński
gasket.

1. INTRODUCTION AND MAIN RESULTS

1.1. Self-Avoiding Walk on the Sierpiński Gasket

Self-avoiding walks on hypercubic lattices Zn have been studied mathemat-
ically for half a century, but compared to random walks (and diffusion
processes, their continuum limits), amazingly little is known. (1)

For random walks, nice properties such as Markov properties enabled
deep and accurate studies, many of which are effective for spaces with any
dimension n. On the other hand, self-avoiding walks seem to have little
such strong general methods. In fact, their behaviors are expected to vary
drastically with the dimension n for small n, so that effective methods pos-
sibly vary for different spaces.



Turning our attention to the 2- and 3-dimensional Sierpiński gaskets,
there are works on the restricted self-avoiding walks (a subset of self-
avoiding walks, to be defined in Section 3.1) in ref. 2, and mathematically
rigorous studies for the full self-avoiding walk (including a proof that the
restriced self-avoiding walk of ref. 2 are in the same universality classes
with the full self-avoiding walk), with further precise asymptotic results,
exist for both the 2-dimensional Sierpiński gasket (3–5) and the 3-dimensional
Sierpiński gasket (4-simplex lattice). (6)

In the direction of generalization to d-dimensional Sierpiński gaskets,
there is a work (7) on the restricted model for d=4, 5, following the lines
of ref. 2 with a propsal of an approximation method for general d.
(d-dimensional Sierpiński gasket is the d+1-simplex lattice in ref. 7.)
However, studies in the direction of extending the rigorous renormalization
group analysis to d-dimensional cases have not appeared, to the authors’
knowledge.
A main object of this paper to propose a general and mathematically

rigorous renormalization group formulation of the self-avoiding walks on
dSG for all d, from which one can derive asymptotic behaviors. As an
application we prove asymptotic behaviors, such as the exponent for mean
square displacement, of the restricted model of self-avoiding walks on 4SG.
(The restricted model considers those self-avoiding walks which does not
take 2 or more steps in row in each unit simplices (Section 3.1).)
We emphasize that a rigorous renormalization group analysis is non-

trivial for the self-avoiding walks on dSG. Though it is easy to write down
the renormalization group recursion equations for small d, it is of course
another thing to analyze their trajectories rigorously. (Rigorous analysis of
renormalization group trajectories and rigorous proofs of their implications
on asymptotic behaviors of self-avoiding walks seem to have been ignored
in the physics literature.)
It is not because the life is simple on gaskets that the gaskets are

appealing, but because (as we will show in this paper) we can formulate
and prove with mathematical rigor that an appropriate renormalization
group formulation contains full imformation of asymptotic behaviors of
self-avoiding walks. Since the renormalization group analysis contains full
information on asymptotic behaviors, the authors think that it is too
important not to analyze them with mathematical rigor and in generality
(as we do in this paper).

1.2. Renormalization Group Approach

General ‘‘philosophy’’ of the renormalization group (RG) in physics
(and the previous rigorous studies on 2SG and 3SG) suggest that a RG
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approach to the asymptotic behaviors of the self-avoiding paths on dSG
starts with splitting the analysis into two parts:

(i) Formulate the RG, a dynamical system on a ‘‘natural’’ parameter
space, and then derive nice properties about the fixed points and the
trajectories of the RG flows, such as uniqueness of certain fixed point and
convergence of critical trajectories.

(ii) Derive asymptotic behaviors of the self-avoiding paths from the
properties of RG flows.

The RG is a dynamical system determined by a recursion map FF ,
which will be defined in (10), on a finite dimensional Eulidean space (the
parameter space RId defined in (3)). For general case of physical interest,
we should consider infinite dimensional parameter space, but the so called
finite ramifiedness of dSG implies that the RG in the present study is finite
dimensional. The RG map is a response in the parameter space to the
‘‘scale transformation’’ (smoothing out or putting in finer structures to the
paths) on the space of paths. (The transformation suitable for paths on
dSG is a decimation, which will be implicit in the proof of Proposition 4.)
The quantities we need to extract from the RG map FF are the

following.

(i) The largest eigenvalue l of the differential map of FF at a self-
avoiding fixed point xFc.

(ii) The critical point bc, which is the intersection point of the critical
surface (the set of points from which the trajectories of RG converge to the
self-avoiding fixed point xFc) and the canonical curve (the curve defined
by (17)).

We give the precise definitions of l and bc and also the assumptions on the
RG map FF at (FP1)–(FP4) and (CS1) in Section 3.1. (To state them
rigorously, we need to prepare technically cumbersome definitions in Sec-
tion 2 starting from the definition of dSG.)
In this paper we will prove the following. Fix d F 2. For each k ¥ Z+,

let N(k) be the number of k step self-avoiding paths on dSG starting from
the origin O, and let Ek[ · ] be the expectation with respect to the uniform
distribution (averaging with equal weight) on such paths.

Theorem 1 (Theorems 10 and 11). If there exists a critical point
bc then

(i) limkQ.
1
k logN(k)=bc.
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(ii) limkQ.
1
log k log Ek[|w(k)|

s dw]=s, s F 0, where | · | denotes the
Euclidean length and dw=

log l
log 2 .

The first result says that the connectivity constant of the self-avoiding
paths on dSG is ebc. The second result says that the exponent for mean
square displacement is 1/dw, which indicates that a typical k step self-
avoiding path w deviates from the starting point by |w(k)| ’ k1/dw. (Since
Theorem 11 holds for all s F 0, we have the exponent for all the moments
as well as that for the mean square displacement, but we will keep the good
old terminology in this paper.) We will prove an additional statement on
the correction to the ‘‘leading terms’’ N(k) ’ ebck and |w(k)| ’ k1/dw. See
Theorems 10 and 11 for details.
Possibly the notions such as fixed points and critical points are not

new from the view point of philosophy of RG. What is new here is that
we propose a mathematically well-defined formulation (Section 3.1) which
are sufficient (Section 3.2) to prove asymptotic behaviors of self-avoiding
walks on dSG with all d, giving a mathematical evidence that the dynamics
of RG contains information on the asymptotic behaviors of stochastic
processes.
As an application of the formulation, we prove in Section 5 that the

assumptions on the RG map in Section 3.1 are satisfied for the restricted
model of self-avoiding paths on 4SG.

Theorem 2 (Theorems 14 and 15). The self-avoiding fixed point
xFc and the critical point bc, res of the restricted model on the 4 dimensional
pre-Sierpiński gasket (4SG) exists.
In particular, the number Nres(k) of restricted self-avoiding paths of

length k starting from 0 satisfies

lim
kQ.

1
k
logNres(k)=bc, res.

and the exponent for mean square displacement for the restricted model is
the reciprocal of dw=

log l
log 2=1.6657696 · · · , in the sense that

lim
kQ.

1
log k

log Eres, k[|w(k)| s dw]=s, s F 0,

where Eres, k is the expectation with respect to the probability measure with
equal weight on length k restricted self-avoiding paths starting at O.
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2. RENORMALIZATION GROUP

2.1. Self-Avoiding Paths on the d-Dimensional Pre-Sierpiński

Gasket

Let d F 2 be an integer. We define a d-dimensional pre-Sierpiński
gasket (pre-dSG) as follows. Consider a d-simplex of a unit side length
embedded in Rd, and let G0={v0, v1, v2,..., vd} be the set of vertices of the
d-simplex, where v0=O=(0, 0,..., 0) is the origin of Rd. (We may occa-
sionally also write v0, i=vi, i=1,..., d.) Let B0={(vi, vj) | 0 E i < j E d} be
the set of non-ordered pairs of vertices, and we denote the pair (G0, B0)
by F0.
We define a sequence Fn=(Gn, Bn), n=1, 2, 3,..., of finite pre-dSG

inductively by

Gn+1=0
d

i=0
(Gn+2nvi), Bn+1=0

d

i=0
(Bn+2nvi), n=1, 2, 3,..., (1)

where we write A+v={x+v | x ¥ A} for a set A and a point v.
Fn is a d-simplex of side length 2n, composed of d+1 copies of Fn−1,

with d+1 outmost points being vn, 0=O and vn, i=2nvi, i=1, 2, 3,..., d. Gn
is a collection of vertices in the copies of Gn−1, and Bn is a collection of
bonds in the copies of Bn−1.
We call

F=(G, B); G=0
.

n=0
Gn, B=0

.

n=0
Bn, (2)

the d-dimensional pre-Sierpiński gasket (pre-dSG). We identify (v, vŒ) ¥ B
with line segments vvŒ whenever it would be natural to do so.
Denote the set of non-negative integers by Z+, and for w: Z+Q G,

denote by L(w) ¥ Z+ 2 {.} (‘‘the length of w’’) the smallest integer satis-
fying

w(i)=w(L(w)), i F L(w).

Define the set of self-avoiding paths W0 to be the set of maps w: Z+Q G,
such that

w(i1) ] w(i2), 0 E i1 < i2 E L(w),

|w(i)−w(i+1)|=1, 0 E i E L(w)−1,

w(i) w(i+1) ¥ B, 0 E i E L(w)−1.
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2.2. Overview of Technical Definitions

We need to prepare several basic definitions in Sections 2.3, 2.4, and
2.5 before introducing the main notions in Section 3.1. Here we will briefly
explain the basic definitions.

Section 2.3. We first classify how a self-avoiding path intersects a
unit d-simplex. A path which enters a simplex moves within the simplex for
at most d steps (because it may not hit the same vertex twice). If a path
takes i1 steps in the simplex and goes into an adjacent one, and never
returns to the simplex, we label the intersection of the path and the simplex
by the index (i1, 0,..., 0). Alternatively, the path may return to the simplex
a number of times, and for each return the intersection may be labelled by
how many steps the path takes in the simplex. Thus if a path spends 3 steps
for the first intersection and 1 step for the second intersection with a
simplex, then we label the intersection by the index (1, 3, 0,..., 0). (For our
purpose we may identify (1, 3, 0,..., 0) and (3, 1, 0,..., 0); we are free to
rearrange a sequence in an index in the ascending order.) We denote the set
of the indices by Id.
Each index corresponds to a component in the parameter space on

which the RG map acts. Therefore for each index I ¥Id, we need a set of
self-avoiding pathsW (n)

I on Gn labelled by I which has a similar structure as
the intersection of a path and a unit simplex labelled by I. For an index
with more than one non-zero entries, such as I=(1, 3, 0,..., 0), the setW (n)

I

is defined to be a set of collection of self- and mutually-avoiding paths on
Gn. For example, W

(n)
(1, 3, 0,..., 0) is a set of disjoint pairs of self-avoiding paths

on Gn, such that one path starts and ends at outmost vertices of Gn, but hits
no other outmost vertices, while the other path hits two outmost vertices
other than the endpoints.

Section 2.4. The RG in our study is the recursion map in n of the
joint generating functions XF n=(Xn, I(xF), I ¥Id) of sJ, J ¥Id, for W

(n)
I ,

where sJ is the number of unit simplices whose intersection with the path is
of type J.
A similarity of finite gaskets Gn among different ns implies a recursion

relation to hold for all n, and this is our RG. In this way we arrive at a
mathematically well-defined notion of ‘‘a response in the parameter space
of the scale transformation in the path space.’’

Section 2.5. A study in 3SG shows (6) that in general there are more
than one non-trivial fixed points of the RG. Therefore we have to know
which fixed point is relevant for the asymptotic behavior of the self-avoid-
ing paths. It turns out that the condition that the fixed point is in a certain
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invariant set of the RG ensures our proof to work. To formulate the con-
dition (see (FP4)), we introduce the invariant set Xd.

We note that it would also be useful for intuitive understanding to
look at the case of 3SG, which is explicitly given in ref. 6.

2.3. Classification of Self-Avoiding Paths

Denote by Tb the family of all the translations of B0 that are subsets
of B. Namely, Tb contains all the unit d-simplices which compose the
pre-dSG. (with each simplex regarded as a collection of bonds). Put

Id={(i1, i2,..., ik) ¥ Zk+ | k=1, 2, 3,..., 0 < i1 E i2 E · · · E ik,

i1+i2+·· ·+ik+k E d+1}, (3)

and denote the number of elements of Id by fd=ÄId.

Proposition 3. Let w ¥W0 and D ¥Tb, and consider the set of
bonds

A={w(i) w(i+1) ¥ D | i=0, 1, 2,..., L(w)}.

If A is not empty, then there exists I=(i1, i2,..., ik) ¥Id such that A is
congruent to

DI={Ov1v2 · · · vi1 −1vi1 , vi1+1 · · · vi1+i2 ,..., vi1+· · · ik−1+1 · · · vi1+· · · ik}, (4)

where we used an abbreviation such as

Ov1v2 · · · vi1 −1vi1=Ov1, v1v2, v2v3,..., vi1 −1vi1 .

Example.

• I2={(1), (2)}: A ]” is congruent to either {Ov1} or {Ov1v2}.

• I3={(1), (2), (3), (1, 1)}: There is a possibility that a path enters a
unit tetrahedron twice, as {Ov1, v2v3}.

• I4={(1), (2), (3), (4), (1, 1), (1, 2)}.

Correspondingly, f2=2, f3=4, f4=6.

Proof of Proposition 3. If A ]”, namely, if the path w enters the
unit d-simplex specified by D, then A is composed of one or more con-
nected clusters. That is, w may pass through D and may come back and
reenter D. Since w is self-avoiding, the second passage does not intersect
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with the first one. Thus we can classify A by the size of the connected seg-
ments. One may rearrange the segments in an increasing order of size,
hence each class is determined by an increasing finite sequence of positive
integers, i1 E i2 E i3 E · · · E ik for some k F 1. The meaning of the condi-
tions in the definition of Id should now be obvious. Since D is a translation
of B0 which is the set of bonds in the unit d-simplex Ov1v2 · · · vd, the state-
ment follows. L

In analogy with Proposition 3 we can classify the set of self-avoiding
paths on Fn by Id, and also generalize to two or more self-avoiding paths.
For n ¥ Z+ and u, v ¥ Gn, defineW (n, u, v) by

W (n, u, v)={w ¥W0 | w(0)=u, w(L(w))=v, w(i) ¥ Gn, i ¥ Z+}.

For n ¥ Z+ and I=(i1, i2,..., ik) ¥Id, defineW
(n)
I by

W(n)
I ={(w1, w2,..., wk) ¥W

(n, O, vn, i1 )×W(n, vn, i1+1, vn, i1+i2+1)

×W(n, vn, i1+i2+2, vn, i1+i2+i3+2)× · · · ×W(n, vn, i1+i2+· · ·+ik−1+k−1, vn, i1+i2+· · ·+ik+k−1) |
if i ] j then wi and wj do not hit common points, and for each j
wj hits points vn, i1+i2+· · ·+ij−1+j−1, vn, i1+i2+· · ·+ij−1+j, vn, i1+i2+· · ·+ij−1+j+1 ,
· · · vn, i1+i2+· · ·+ij−1+ij+j−1, in this order,
but hits no other points in {vn, a | a=0, 1, 2,..., d}}. (5)

Obviously, k is equal to the number of path segments that form an element
inW (n)

I .

Example. For d=4, there are f4=6 types of setsW
(n)
I , which are

{(1)}: Set of paths from O to vn, 1 which do not hit vn, 2, vn, 3, vn, 4.

{(2)}: Set of paths from O to vn, 2 passing through vn, 1 which do not
hit vn, 3, vn, 4.

{(3)}: Set of paths from O to vn, 3 passing through vn, 1 and vn, 2 in this
order and avoiding vn, 4.

{(4)}: Set of paths from O to vn, 4 passing through vn, 1, vn, 2, and vn, 3
in this order.

{(1, 1)}: Set of pair of (self- and mutually-avoiding) paths, one from
O to vn, 1 and the other from vn, 2 to vn, 3 neither hitting vn, 4.

{(1, 2)}: Set of pair of paths, one from O to vn, 1 and the other from
vn, 2 to vn, 4 via vn, 3.
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For w ¥1n ¥ Z+
1I ¥Id

W (n)
I denote by ŵ the set of bonds which w

passes. Namely, for n ¥ Z+ and I=(i1, i2,..., ik) ¥Id, and for w=
(w1, w2,..., wk) ¥W

(n)
I ,

ŵ={wj(i) wj(i+1) ¥ B | i=0, 1, 2,..., L(wj)−1, j=1, 2,..., k}.

Also define SI(w), I ¥Id, by,

SI(w)={D ¥Tb | ŵ 5 D is congruent to DI of (4)}, (6)

and denote by sI(w)=ÄSI(w), the cardinality of SI(w). sI(w) is the number
of unit d-simplices in F such that the trajectory of the path (or the paths)
w is congruent to DI. It is a generalized notion of the length of the path in
the sense that

C
k

i=1
L(wi)= C

J ¥Id

|J| sJ(w), w=(w1, w2,..., wk) ¥W
(n)
I ,

I=(i1,..., ik) ¥Id, n ¥ Z+,

(7)

where, for J ¥Id we define |J|, the length of J, by

|J|=j1+·· ·+ja, if J=(j1,..., ja). (8)

2.4. Parameter Space and the Renormalization Group

Assumptions of the main results are stated in terms of the flows of the
associated renormalization group (RG), which is a map (discrete-time
dynamical system) in a parameter space of variables in the generating
function of generalized path length (sJ, J ¥Id). The dynamical system
is derived as the response in the parameter space to the change in n.
A graphical property of dSG called finite ramifideness implies that the RG
is a finite dimensional dynamical system.
Define the generating function

XF n=(Xn, I, I ¥Id): CId
Q CId

of (sJ, J ¥Id) for a family of paths sets (W
(n)
I , I ¥Id), by,

Xn, I(xF)= C
w ¥W(n)I

D
J ¥Id

x sJ(w)J , xF=(xJ, J ¥Id) ¥ CId, n=0, 1, 2,... .

(9)

The right hand side is a finite summation, so Xn, I is defined on CId.
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The starting point of our analysis is the following.

Proposition 4. XF n=(Xn, I, I ¥Id), n=0, 1, 2,..., satisfy the follow-
ing recursion relations.

XF 0(xF)=xF, xF ¥ CId,

and

XF n+1=FF pXF n, (10)

where

FF=(FI, I ¥Id)=XF 1,

is a fd dimensional vector valued function whose components are poly-
nomials in fd variables with positive integer coefficients. In particular,
RId
+ is an invariant set of FF .
The degree of each term in the polynomials are no less than 2 and no

greater than d+1, and F(1) contains terms x(1) 2 and x(1) d+1.

Proof. Let n ¥ Z+. F1 is composed of d+1 d-simplices congruent
to F0. Similarly, Fn+1 is composed of d+1 d-simplices Fn. The similarity of
the two compositions leads to a natural map

p: W (n+1)
I QW(1)

I , I ¥Id.

For each Xn+1, I, classify the summation in the right hand side of (9) (with
n+1 in place of n) by p(w) ¥W (1)

I to find

Xn+1, I(xF)= C
w ¥W(n+1)I

D
J ¥Id

x sJ(w)J = C
wŒ ¥W(1)I

C
w ¥W(n+1)I ; p(w)=wŒ

D
J ¥Id

x sJ(w)J

= C
wŒ ¥W(1)I

D
IŒ ¥Id

1 C
wœ ¥W(n)IŒ

D
J ¥Id

x sJ(w
')

J
2 sIŒ(wŒ)

= C
wŒ ¥W(1)I

D
IŒ ¥Id

(Xn, IŒ(xF)) sIŒ(wŒ)=X1, I(XF n(xF)).

By definition (9), each term in FI=X1, I has a form <J ¥Id
x sJ(w)J ,

hence its degree ;J ¥Id
sJ(w) is, by definition (6), the number of unit

simplices in F1 that a path w passes through. This is bounded from above
by the total number of unit simplices in F1, which is d+1, and from below
by 2, because any two extreme (outmost) vertices of F1 is apart by length 2.
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Positivity of coefficients of X1, I are obvious. Existence of terms
x2(1) and x

d+1
(1) in F(1)=X1, (1) follows from the paths Ov0, 1v1, 1 and

Ov0, d(v0, d+v0, d−1)(v0, d−1+v0, d−2) · · · (v0, 2+v0, 1) v1, 1 inW
(1)
(1). L

Large n means that the endpoints of the paths are far apart, hence
it corresponds to large path length L. Intuitively speaking Proposition 4
therefore gives a response to the change in the length scale of the system in
consideration, the sets of self-avoiding paths, in terms of the parameter
space of variables in the generating functions of sI, the generalized path
length. Global properties of the trajectories of the map FF therefore is
expected to give (and we will show that it does) large length asymptotic
behaviors of self-avoiding paths on dSG.
In analogy to the (mathematically misleading) terminology in physics

literature, we call the discrete-time dynamical system on RId
+ defined by the

map FF , the renormalization group (RG).

2.5. Invariant Sets

If there is a subset of RId
+ which is an invariant set of the RG map FF ,

then the recursion (10) is naturally regarded as a recursion equation on the
subset.
For I=(i1,..., ik) and J=(j1,..., ja) in Id, denote by I À J the

rearrangement of i1,..., ik, j1,..., ja in non-decreasing order, and define
Xd … RId

+ by

Xd={xF ¥ RId
+ | xI À J E xIxJ for all I, J ¥Id such that I À J ¥Id}. (11)

Example. X3={xF ¥ RI3
+ | x(11) E x

2
(1)}, X4={xF ¥ RI4

+ | x(11) E x
2
(1),

x(12) E x(1)x(2)}.

Proposition 5. Xd is an invariant set of FF .

Proof. Let I, J, I À J ¥Id. Note that there is a natural one-to-one
into map W (1)

I À J QW
(1)
I ×W

(1)
J . For w ¥W (1)

I À J, let (w1, w2) ¥W
(1)
I ×W

(1)
J be

the corresponding pair. Then, for each D ¥Tb, ŵ 5 D may be regarded as a
composition of ŵ1 5 D and ŵ2 5 D, hence if ŵ 5 D is congruent to DK of (4)
for some K ¥Id, then there exists K1, K2 ¥Id (allowing an emptyset) such
that K=K1 ÀK2 and such that ŵi 5 D, i=1, 2, is congruent to DKi ,
i=1, 2, respectively. Note also that xF ¥ Xd implies xK1 ÀK2 E xK1xK2 .
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Therefore by definition (Proposition 4 and (9)),

FI À J(xF)= C
w ¥W(1)I À J

D
K ¥Id

xK sK(w)

E C
w1 ¥W

(1)
I

C
w2 ¥W

(1)
J

D
K1 ¥Id

xK1
sK1 (w1) D

K2 ¥Id

xK2
sK2 (w2)=FI(xF) FJ(xF). L

In the following, forK …Id, we use a (somewhat irregular) notation

RK
+={xF ¥ RId

+ | xJ=0, J ¨K} … RId
+ . (12)

We also write CK … CId, ZK
+ … ZId

+ , etc.
Define

Kres={(1), (11),..., (1 · · · 1)}. (13)

The indices in Kres correspond to those paths which go out of a simplex
after single step passage each time they enter the simplex.

Proposition 6. RKres
+ is an invariant subset of FF .

Proof. This is proved by generalizing the arguments in the proof of
ref. 6, Proposition 2.1 (4)(5). L

3. MAIN RESULTS

3.1. Fixed Point and Critical Trajectory

Based on experiences with dSG for d=2, 3, 4, we define notions
which are relevant for asymptotic behaviors of self-avoiding paths on dSG.
Denote the Jacobi matrix of FF in Proposition 4 by J=(JIJ):

JIJ(xF)=
“FI

“xJ
(xF), I, J ¥Id, xF ¥ CId. (14)

We say that xFc ¥ RId
+ is a self-avoiding fixed point, if the following hold.

(FP1) FF (xFc)=xFc.
(FP2) J(xFc) in (14) is diagonalizable by an invertible matrix. The

eigenvalue l which is largest in absolute value satisfies l > 1 with multipli-
city 1, and all the other eigenvalues have absolute values strictly less than 1.
Denote by vFL=(vL, I, I ¥Id) a left eigenvector of J(xFc) corresponding

to l;

C
I ¥Id

vL, IJIJ(xFc)=lvL, J, J ¥Id,
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which we chose to have non-negative components (possible, thanks to
Frobenius’ theorem). Then vL, J > 0, J ¥Id.
Similarly, denote by vFR a right eigenvector corresponding to l with

non-negative components;

C
J ¥Id

JIJ(xFc) vR, J=lvR, I, I ¥Id.

Then vR, (1) > 0.

(FP3) For all I ¥Id such that xc, I ] 0, there exists m ¥ ZId
+ , satisfying

m(1) > 0 and mJ=0 if xc, J=0, such that there is a term<J ¥Id
xJ mJ in FI.

(FP4) xFc ¥ Xd 0{0F}.

Assume that there exists a self-avoiding fixed point xFc. We say that
xF ¥ RId

+ is in the domain of attraction of xFc, if the following hold.

(DA1) limnQ. XF n(xF)=xFc.

(DA2) If xc, I ] 0 then xI ] 0.

We denote by Dom(xFc) the set of xF ¥ RId
+ which are in the domain of

attraction of xFc.

Example. If xFc is a self-avoiding fixed point, then xFc ¥Dom(xFc); i.e.,
a self-avoiding fixed point satisfies (DA1)–(DA2).

Let K …Id. Instead of (5), we may consider a set of walks W
(n)
K, I by

restricting to those paths inW (n)
I which satisfy sJ(w)=0 if J ¨K:

W (n)
K, I={w ¥W(n)

I | sJ(w)=0, J ¨K}. (15)

If K=Id, then we are dealing with the original (full) model;
W (n)

Id , I=W
(n)
I . We define the corresponding generating functions by

XK, n, I(xF)= C
w ¥W(n)K, I

D
J ¥K

x sJ(w)J ,

xF=(xJ, J ¥K) ¥ CK, n=0, 1, 2,..., I ¥Id. (16)

If RK
+ is an invariant subset of R

Id
+ , then XFK, n satisfy (10), with a

convention that the components corresponding to J ¨K are 0.
ForK …Id and b ¥ R, define xFcan,K(b)=(xcan,K, I(b), I ¥Id) by

xcan,K, I(b)=˛
e−b |I|, I ¥K,
0, I ¨K,

(17)
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where |I| is defined in (8). Following the notions in statistical mechanics,
the partition function for a set of self-avoiding paths specified by K is
defined by ZFK, n=(ZK, n, I, I ¥Id), with

ZK, n, I(b)= C
w ¥W(n)K, I

e−bL(w), b ¥ R, n=0, 1, 2,... . (18)

With (7), we see that

ZK, n, I(b)=XK, n, I(xFcan,K(b)). (19)

In view of this relation, we will occasionally refer to the curve in the
parameter space RId defined by (17) as the ‘‘canonical curve.’’
If K=Id we also use an abbreviation xFcan(b)=xFcan, Id (b) and

ZF n(b)=ZFId , n(b). Hence

Zn, I(b)=Xn, I(xFcan(b))= C
w ¥W(n)I

e−bL(w), b ¥ R, n=0, 1, 2,... . (20)

In the following, the set of paths in (15) with K=Kres will be called
the restricted self-avoiding paths, the corresponding generating function
(16), the generating function for the restricted model, and so on.
We need the following additional definitions for Theorem 10.

(CS1) We say that bc ¥ R is a critical point of the full model if
xFcan(bc) ¥Dom(xFc) for a self-avoiding fixed point xFc.

(CS2) We say that bc, res ¥ R is a critical point of the restricted model
if xFcan,Kres (bc, res) ¥Dom(xFc) for a self-avoiding fixed point xFc.

Note that by definition (11),

xFcan(bc) ¥ Xd, and xFcan,Kres (bc, res) ¥ Xd. (21)

Remarks. (i) The boundary “D of the set D … Xd defined in (27) is
a bounded closed non-empty FF -invariant subset of RId (which are easy
consequences of Theorem 12). Hence, the fixed point theorem implies that
there exists a fixed point of FF which satisfies (FP1) and (FP4).
The other conditions on the self-avoiding fixed point (FP2) and (FP3)

depend more on the details of the self-avoiding paths on dSG. However,
these conditions deal with conditions of Perron–Frobenius type and irre-
ducibility, which are ‘‘soft’’ conditions, hence we expect them to hold.

(ii) What may be more difficult is the condition (CS1), which states
existence of a trajectory converging to a fixed point. This essentially
suggests that a bounded trajectory necessary converges to a fixed point (at
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least in the domain Xd), that the renormalization group dynamical system
is free of limit cycles much less any chaotic behaviors. There are of course
many discrete dynamical systems, even on one-dimensional space, which
exhibit chaotic behaviors, hence this condition is far from trivial.
On the other hand, it is proved in refs. 3 and 6 that for d=2 and

d=3, all the conditions (FP1)–(FP4) and (CS1) are satisfied. We also
prove in Section 5 that (FP1)–(FP4) and (CS2) are satisfied for the
restricted model on 4SG. Based on these results, we conjecture that these
conditions are satisfied (hence the results about the asymptotic behaviors of
the self-avoiding walks hold) for all d.

3.2. Asymptotic Behaviors

Here we will state main consequences of assumptions on RG for-
mulated in Section 3.1.
First we note the following characterization of a critical point bc.

Theorem 7. If bc ¥ R is a critical point of the full model and xFc the
corresponding fixed point (implicit in the definition (CS1)), then for I ¥Id,

lim
nQ.
Zn, I(b)=˛

0, b > bc,
xc, I, b=bc.

Moreover,

lim
nQ.

C
d

i=1
Zn, (i)(b)=., b < bc.

In particular, critical point (if exists) is unique.
Similar result holds also for the restricted model (CS2).

Since the critical point (if exists) is unique, there is one and only one
self-avoiding fixed point that is related by (CS1) to the critical point.
Though it is not trivial to prove the uniqueness of self-avoiding fixed

point, we therefore can (and we will, in the proof of Theorem 10) talk
about the unique self-avoiding fixed point that is related to the critical
point, under the asumption that the critical point exists.
To state the next Theorem, we note a relation between 0 components

of a fixed point and an invariant subset of FF . In the known case of d=2
and d=3, the self-avoiding fixed points have 0 components. We will write

KxFc={I ¥Id | xc, I ] 0}, (22)
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and, as in (12),

RKxFc+ ={xF ¥ RId
+ | xJ=0, J ¨KxFc} .

Proposition 8. RKxFc+ is an invariant subset of FF .

Proof. If xc, I=0 then FI(xFc)=xc, I=0. On the other hand FI is a
polynomial with positive coefficients. Therefore, each term in FI(xF) con-
tains one of xJ’s such that xc, J=0. In other words, each term in FI(xF)
contains xJ such that J ¨KxFc .
Therefore, if xF ¥ RKxFc+ , then FI(xF)=0 for those I satisfying xc, I=0, or

equivalently, I ¨KxFc . L

Remark. For d=2 and d=3, the results in refs. 3 and 6 respectively
proves (by explicit calculations) that the self-avoiding fixed point xFc is
unique and thatKres=KxFc .

For I ¥Id, n ¥ Z+, and xF ¥ RId
+ , define a probability measure mxF, n, I on

the finite setW (n)
I by

mxF, n, I[{w}]=
1

Xn, I(xF)
D
J ¥Id

x sJ(w)J , w ¥W (n)
I , (23)

whenever Xn, I(xF) ] 0.
Note that if xc, I ] 0 and xF ¥Dom(xFc), then (DA1) implies that

Xn, I(xF) > 0 for sufficiently large n, hence if xF ¥Dom(xFc) then mxF, n, I is well
defined.

Theorem 9. Let xFc be a self-avoiding fixed point and xF ¥Dom(xFc).
Then the following hold.

(i) There exists fd×fd matrix L(xF) whose elements are non-nega-
tive such that

L(xF)= lim
nQ.
l−nJn(xF), (24)

where Jn is as in (14).

(ii) For I ¥KxFc , the joint distribution of scaled generalized path
lengths (l−nsJ, J ¥KxFc ) under mxF, n, I converges weakly to a Borel probability
measure pgxF, I on RId as nQ.. Here, l is as in (FP2). pgxF, I is supported
on RId

+ .
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The generating function jg
I=j

g
xF, I, as a function of (tJ, J ¥KxFc ),

defined by

jg
xF, I(tF)=F

.

0
e tF ·tFpgxF, I[dtF], tF ¥ CKxFc ,

is an entire function in tF.

(iii) The set of functions jg
I=j

g
xF, I, I ¥KxFc , are uniquely determined

by

xc, I
“jg

I

“tJ
(0])=LIJ(xF) xJ, if I, J ¥KxFc ,

xc, Ij
g
I (ltF)=FI(xFc jF

g(tF)), tF ¥ CKxFc , if I ¥KxFc ,

(25)

where we define jg
J=0 for J ¨KxFc , and in the variable for FF we used an

(irregular) notation

(xF jF g(tF))J=xJ j
g
J(tF), J ¥Id.

(iv) If xF ¥Dom(xFc) 5 Xd and I ¥KxFc , then the distribution of
l−nL(w), the scaled length of w ¥W (n)

I , under mxF, n, I converges weakly to a
Borel probability measure p̄gxF, I, which has a C

. density r̄g
xF, I.

In particular, r̄g
xF, (1)(t) > 0, t > 0.

We move on to the results on paths with step numbers fixed, instead
of paths with endpoints fixed.
We denote the self-avoiding paths starting from origin O by W (0):

W (0)={w ¥W0 | w(0)=O}. Also, we define, in analogy with (15), W
(0)
K=

{w ¥W (0) | sJ(w)=0, J ¨K}, forK …Id.
For each k ¥ Z+, let

N(k)=Ä{w ¥W (0) | L(w)=k}

be the number of self-avoiding paths of length k starting from O, and for
K …Id,

NK(k)=Ä{w ¥W (0)
K | L(w)=k}.

Theorem 10. If there exists a critical point bc ¥ R of the full model,
then there exist positive constants Ci, i=1, 2, and real constants Ci,
i=3, 4, such that

C1kC3ebck EN(k) E C2kC4ebck, k=1, 2, 3,... .
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Similarly, if there exists a critical point bc, res of the restricted model,
then there exist positive constants C −i, i=1, 2, and real constants C

−

i,
i=3, 4, such that

C −1k
C −3ebc, resk EN(k) E C −2k

C −4ebc, resk, k=1, 2, 3,... .

For each positive integer k, let P̃k be a distribution onW (0), defined by

P̃k[A]=
1
N(k)

Ä{w ¥ A | L(w)=k}, A …W (0).

The next result shows the existence of the exponent for mean square
displacement, which indicates (in a log ratio sense) that a typical self-
avoiding path w of length L(w)=k deviates from the starting point by
|w(k)|£ k1/dw, where

dw=
log l
log 2

. (26)

Theorem 11. If there exists a critical point bc ¥ R of the full model,
then there exist constants a, k0, C, and CŒ such that

s log k−sa log log k+C E log Ek[|w(k)| s dw] E s log k+sa log log k+CŒ,

k F k0, s F 0,

where Ek denotes expectation with respect to P̃k, and | · | denotes the
(Euclidean) length in Rd.
A similar result holds for the restricted model.

Remarks. (i) The intuitive meaning of (26) is as follows. l is the
asymptotic rate of increase of the number of steps as n is increased. Since
the size (scale) is increased by a factor 2 as n is increased by 1, the log ratio
of the number of steps to the distance scale is equal to the log ratio of
l and 2. Though this is a standard idea in the renormalization group
approaches to asymptotic behaviors, our emphasis here is on the precise
mathematical statements and rigorous proofs that fit to such intuitive
pictures.

(ii) As may be seen from the fact that l is defined in (FP2) as the
largest eigenvalue of the differential map of FF at xFc while bc is defined in
(CS1) as the intersection of the canonical curve and the critical surface,
these two quantities have no direct relations. In fact, in the common
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wisdom of the renormalization group ideas, the exponent for mean square
displacement is considered to be universal; i.e., independent of details of
the system, (in fact the full model and the restricted model have the
same l), while the connective constant depends on the details of the system
(the full model and the restricted model have different values of bc). This is
related to the fact that l is a solution to an algebraic equation and can be
calculated explicitly to arbitrary precision, while bc has no such simple
algebraically closed formula and is difficult to calculate explicitly.

(iii) It may be worthwhile to note that the self-avoiding walks on
hypercubic lattice Zn in high dimensions (n > 4) are proved to be in the
same universality class as the random walks—i.e., they have similar
asymptotic behaviors—by the lace expansion methods. (8, 9) In a sense, the
self-avoiding walks in high dimensional spaces may be seen as (non-trivial)
perturbations to the random walks.
However, it is also believed (and trivially true for n=1!), that for n < 4

the asymptotic behaviors are very different, hence the problem remains in
lower dimensional spaces. We note that dSG are, from the renormalization
group point of view, spaces ‘‘between Z1 and Z2.’’ We also point out that
the lace expansion method heavily uses translational invariance of Zn, while
fractals lack the invariance. In fact, the random walks and the self-avoiding
walks are known to be in different universality classes on 2SG and 3SG;
the values of exponents for mean square displacement of the self-avoiding
walks and the random walks have no explicit simple relations. (10)

4. OUTLINE OF PROOFS

Given the precise formulation of assumptions and claims in Section 3,
we can prove all the Theorems in Section 3.2. However, to reduce the size
of this paper, we will only give a brief outline of the proof here, which, with
earlier works for d=2 (3–5) and d=3, (6) we hope will enable a reader to
guess how a proof works. A full detail of the proof is contained in ref. 11.
The archived preprint (11) is based on the original version (submitted to

the journal) of the present paper, and is revised in full accordance with the
comments from one of the referees who went through the details of the
proofs.

4.1. Phase Structure

Theorem 7 is a consequence of the following, which shows the phase
structures of the models.
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Let

D={xF ¥ Xd | sup
n ¥ Z+

max
I ¥Id

Xn, I(xF) <.}, (27)

and denote its exterior, boundary, interior in Xd by Dc, “D, and Do,
respectively. (Namely, Dc=Xd 0 D̄, “D=D̄ 5 Dc, Do=D0“D.) Let also

D̃={xF ¥ Xd | lim
nQ.
max
I ¥Id

Xn, I(xF)=0}.

Theorem 12. (i) It holds that

D={xF ¥ Xd | sup
n ¥ Z+

max
I ¥Id

Xn, I(xF) E 1}. (28)

In particular, D is a closed subset of Xd.
(ii) Let xF ¥ D and xFŒ ¥ Xd. If, for each I ¥Id either x

−

I < xI or
x −I=xI=0 holds, then xFŒ ¥ D̃.
(iii) It holds that

Do=D̃ (29)

(iv) Dc, “D, and Do are non-empty invariant sets of FF .

The proof of this theorem in ref. 11 also shows that

lim
nQ.
Xn, (1)(xF)=., xF ¥ Dc. (30)

Proof of Theorem 7. The case b=bc holds by the definition (CS1).
By the definitions (CS1) and (FP4), limnQ. XF n(xFcan(bc))=xFc ] 0F,

which, with (27) and (29), implies xFcan(bc) ¥ “D. Monotonicity property in
Theorem 12 then implies xFcan(b) ¥ D̃ if b > bc, hence, in particular,
limnQ. ZF n(b)=0.
Finally, if b < bc and xFcan(b) ¥ D=D̄, then the monotonicity property

in Theorem 12 implies xFcan(bc) ¥ D̃=Do, which contradicts xFcan(bc) ¥ “D.
Hence xFcan(b) ¥ Dc and in particular, with the same argument as that led to
(30), we have limnQ. ;d

i=1 Zn, (i)(b)=..
The case of restricted model is similarly proved, if we note (CS2) in

place of (CS1). L

4.2. Distribution of Path Length

Theorem 9 is proved along similar lines as in ref. 6, Sect. 4 (but
requires additional care, because we here do not use explicit formula for
specific d).
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That the convergence of generating functions Xn, I implies the conver-
gence of distribution of scaled length of paths may be observed by the
following simple fact. For xF=(xI, I ¥Id) ¥ CId and tF=(tI, I ¥Id) ¥ CId,
we use an (irregular) notation

xF(tF)=(xI exp(l−ntI), I ¥Id). (31)

Denote by pxF, n, I, the joint distribution of (l−nsJ, J ¥Id) under mxF, n, I. Then
its generating function is expressed, with the definitions (9) and (23), as

F
.

0
e tF ·tFpxF, n, I[dtF]=

Xn, I(xF(tF))
Xn, I(xF)

, tF ¥ CId, (32)

4.3. Exponent for Mean Square Displacement

As in the case of d=3, (6) to prove Theorem 10 one uses Tauberian
type estimates for the number of paths N(k).
Theorem 10 gives sufficient estimate for the denominator N(k) of the

expectation Ek[ · ] in Theorem 11. To estimate the numerator (hence to
prove Theorem 11), one needs two more steps:

• Large deviation type estimates on long paths and short paths.

• Reflection principle.

Among these steps, the reflection principle turns out to be least intuitive in
generalizing to arbitrary dimensions. To avoid falling in a pitfall, it is safer
to define reflections in an algebraic way, by introducing a natural coordi-
nate system, which we explain in Appendix 4.

5. RESTRICTED MODEL ON THE 4-DIMENSIONAL SIERPIŃSKI

GASKET

In this section, we consider the restricted model for d=4. The RG
map FF (Proposition 4) is a map on 6 dimensional space CI4 where, as
in Section 2, I4={(1), (1, 1), (2), (3), (4), (1, 2)}. (For convenience, we
assign the second coordinate to (1, 1) in this section.)
We will consider the restricted self-avoiding walks, the self-avoding

paths w starting from O with the property sJ(w)=0, J ¨Kres, where
Kres={(1), (11)} (see (13) and (15)). We regard R

Kres
+ ={(x(1), x(11), 0,..., 0) |

x(1), x(11) ¥ R+} … RI4
+ .

To apply the results of previous sections, we use the following explicit
properties of FF .
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Proposition 13. The map FF satisfies the following.

(i) FF is a 6 dimensional vector valued function whose components
are polynomials in 6 variables (1), (11), (2), (3), (4), (12) with positive
integer coefficients. The degree of each term in the polynomials are no less
than 2 and no greater than 5.

(ii)

F(1)(x, y, 0, 0, 0, 0)=x2+3x3+6x4+6x5+12x3y+30x4y+18x2y2

+78x3y2+96x2y3+132xy4+132y5,

F(1, 1)(x, y, 0, 0, 0, 0)=x4+2x5+4x3y+13x4y+32x3y2+88x2y3

+22y4+220xy4+186y5.

(33)

(iii) There exist polynomials FI, i, I=(1), (11), i=0, 1, 2, 3, 4, of
positive coefficients, such that F(1), 0 contains a term x

2
(1), F(11), 0 contains a

term x4(1), and

F(1)(xF)=F(1), 1(xF) x(1)+
1
2 F(1), 2(xF) x(2)+

1
3 F(1), 3(xF) x(3)

+F(1), 4(xF) x(11)+F(1), 0(xF),

F(2)(xF)=F(1), 1(xF) x(2)+F(1), 2(xF) x(3)+F(1), 3(xF) x(4)+F(1), 4(xF) x(12),

F(11)(xF)=F(11), 1(xF) x(1)+
1
2 F(11), 2(xF) x(2)+

1
3 F(11), 3(xF) x(3)

+F(11), 4(xF) x(11)+F(11), 0(xF),

F(12)(xF)=F(11), 1(xF) x(2)+F(11), 2(xF) x(3)+F(11), 3(xF) x(4)+F(11), 4(xF) x(12).

(34)

(iv) For each I ¨Kres there exist positive integers m=mI and
mŒ=m −I such that F(1) and F(11) contain terms x

m
(1)xI and x

mŒ
(1)xI, respec-

tively.

(v) If I ¨Kres, then each term in FI contains a positive power of xJ
for some J ¨Kres. Furthermore, each term in F(3) and F(4) has total degree
2 or more of xJ’s with J ¨Kres. F(2) contains a term x

3
(1)x(11)x(12) and F(12)

contains a term x4(1)x(2).

Proposition 13 is proved by explicit calculations on 4SG. The explicit
forms (33) are given in ref. 7, Eqs. (A1) and (A2).
Proposition 13 implies, after somewhat lengthy explicit calculations,

the following Theorem 14, which assures that the assumptions formulated
in Section 3.1 are satisfied for the restricted model on 4SG.
To reduce the length of the present paper, we omit proofs of Proposi-

tion 13 and Theorem 14. See ref. 11 for a proof.
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Theorem 14. (i) F(1)(x, y, 0, 0, 0, 0)=x, and F(11)(x, y, 0, 0, 0, 0)
=y has a unique solution xFc=(xc, yc, 0, 0, 0, 0) in {(x, y, 0, 0, 0, 0) ¥
RKres
+ | (x, y, 0, 0, 0, 0) ¥ X4 0{0F}}.
xc=0.326490898 · · · and yc=0.027929572 · · · are positive. (In partic-

ular,Kres=KxFc .)

(ii) xFc is a self-avoiding fixed point; i.e., satisfies (FP1)–(FP4).

(iii) There exists a critical point of the restricted model bc, res.

Theorem 14 and the results in Section 3.2 imply the following results
on the asymptotic behaviors of restricted self-avoiding paths on the 4
dimensional pre-Sierpiński gasket.

Theorem 15. Let xFc=(xc, yc, 0, 0, 0, 0) ¥ R6+ and bc, res=bc,Kres ¥ R
be the constants defined in Theorem 14. Then the following holds for the
restricted self-avoiding paths on the 4 dimensional pre-Sierpiński gasket.

(i) If xF ¥Dom(xFc), then the following hold.
For I ¥Kres={(1), (11)}, the joint distribution of scaled generalized

path length (l−ns(1), l−ns(11)) under mxF, n, I converges weakly to a Borel
probability measure pgxF, I on R

6 as nQ..
The generating function jg

xF, I, defined by

jg
xF, I(tF)=F

.

0
e tF·tFpgxF, I[dtF], tF ¥ C6,

is an entire function in tF, and the set of functions (jg
xF, (1), j

g
xF, (11)) are

uniquely determined by (25) for d=4.
If xF ¥Dom(xFc) 5 X4 and I ¥Kres, then the distribution of l−nL(w), the

scaled length of w ¥W(n)
I , under mxF, n, I converges weakly to a Borel proba-

bility measure p̄gxF, I, which has a C
. density r̄g

xF, I.
In particular, r̄g

xF, (1)(t) > 0, t > 0.

(ii) For I ¥I4={(1), (11), (2), (3), (4), (12)},

lim
nQ.
ZKres, n, I(b)=˛

0, b > bc, res,
xc, I, b=bc, res,

and

lim
nQ.

C
4

i=1
ZKres, n, (i)(b)=., b < bc, res.
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(iii) The number Nres(k)=NKres
(k) of restricted self-avoiding paths of

length k starting from 0 satisfies

lim
kQ.

1
k
logNres(k)=bc, res.

(iv) The exponent for mean square displacement for the restricted
model is the reciprocal of dw=

log l
log 2=1.6657696 · · · , in the sense that

lim
kQ.

1
log k

log Eres, k[|w(k)| s dw]=s, s F 0,

where Eres, k is the expectation with respect to the probability measure with
equal weight on length k restricted self-avoiding paths starting at O.

Remark. The convergence of mxF, n, I and the properties of the limit
measure holds both for the full model and the restricted model (if
xF ¥Dom(xFc)), because they hold independently of (CS2).

APPENDIX A. A COORDINATE SYSTEM FOR D-DIMENSIONAL

SIERPIŃSKI GASKET AND REFLECTION OPERATOR

Here we introduce a coordinate system with which we define a reflec-
tion, which is used in the final step of proving Theorem 11, as outlined in
Section 4. See the proof of Theorem 11 in ref. 11 for the actual use (and
proofs) of the following.
The definition of pre-dSG in (1) and (2) induces a natural coordinate

system on G which is an onto map p: {0, 1, 2,..., d}Z+ Q G defined as follows.
For each v0, i=vi ¥ G0 (i=0, 1, 2,..., d) we assign a coordinate (i, 0, 0, 0,...);

p(i, 0, 0, 0,...)=v0, i, i=0, 1, 2, 3,..., d.

For n=0, 1, 2,... and i=0, 1, 2, 3,..., d, put Gn, i=Gn+2nv0, i, and
define a 1 : 1 onto map in, i: Gn, i Q Gn by in, i(v)=v−2nv0, i. in, i naturally
induces a 1 : 1 onto map Bn, i Q Bn, which we also denote by in, i.
We proceed with by induction in n and assume that a coordinate system p

on Gn−1 (=Gn−1, 0) has been defined for an nF 1, in such a way that p(v)
¥Gn−1 holds for any v=(i0, i1, i2,..., in−1, 0, 0, 0,...) with ik ¥ {0, 1, 2,..., d},
k=0, 1, 2,..., n−1. For v ¥Gn−1, j, with j ¥ {0, 1, 2,..., d}, define

p(i0, i1, i2,..., in−1, j, 0, 0,...)=v,

if p(i0, i1, i2,..., in−1, 0, 0, 0,...)=in−1, j(v).

Note that this definition is compatible with Gn−1, 0=Gn−1 … Gn.
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R2,i

R2,i

R2,i
 ∼

G1 G1,i ι 1
2,i(G1)

w(L)

T(w)

π (i)=π (0i)
π(ii)=π(00i) π (000i)=π (iii)

π(0i0i)=π (i00i)

π (j0i) π (jii)

π (jji)

Fig. 1. Reflection R2, i and R̃2, i in the i–j plane. p( · · · ) denotes the point corresponding to
the coordinate ( · · · ) as defined in the text, and w(L) and T(w) are for the path w indicated by
thick lines (see the text for the definitions).

Each point in G0{O} has exactly two coordinate representations,
because

p(j, j,..., j, i, 0,...)=p(i, i,..., i, j, 0,...) ¥ Gm, i 5 Gm, j,

0 E i < j E d, m ¥ Z+.

Note also that if p(i0, i1, i2,...) ¥ Gn then ik=0, k=n+1, n+2,....
We now define a reflection map (see the Fig. 1) with which we for-

mulate a reflection principle in Theorem 17. For each i=1, 2, 3,..., d define
R0, i: {0, 1, 2,..., d}Q {0, 1, 2,..., d} by

˛R0, i(0)=i,R0, i(i)=0,

R0, i(j)=j, j ] 0, i.

For n=1, 2, 3,... and i=1, 2,..., d, we define 1 : 1 maps Rn, i : GQ G
and R̃n, i: GQ G (‘‘partial reflections’’ with respect to a hyperplane con-
taining p(j, j,..., j, i, 0, 0,...) ¥ Gn−1, i, j ] 0, i, and ‘‘perpendicular to i th
axis’’), by:

Rn, i(p(x0, x1, x2,...))

=˛
p(x0, x1, x2,...), if p(x0, x1, x2,..., xn,...) ¨ Gn−1, i,

p(R0, i(x0), R0, i(x1),..., R0, i(xn−1), xn, 0, 0, 0,...),

if p(x0, x1, x2,..., xn,...) ¥ Gn−1, i and xn=i,

(35)
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and

R̃n, i(p(x0, x1, x2,...))

=˛
p(x0, x1, x2,...), if p(x0, x1, x2,..., xn,...) ¨ Gn−1 2 i−1n, i(Gn−1),

p(R0, i(x0), R0, i(x1),..., R0, i(xn−1), xn, R0, i(xn+1), 0, 0,...),

if p(x0, x1, x2,..., xn,...) ¥ Gn−1 2 i−1n, i(Gn−1) and xn=0.

(36)

Note that Gn−1, Gn−1, i, and i
−1
n, i(Gn−1) are three copies of Gn−1 aligned in

‘‘i th axis’’ direction, such that

Gn−1 5 Gn−1, i={p(
0, 1, 2
0, 0, 0,..., 0,

n
i, 0, 0,...)}

={p(
0, 1, 2
i, i, i ,...,

n−1
i , 0, 0, 0,...)}, (37)

and

Gn−1, i 5 i−1n, i(Gn−1)={p(
0, 1, 2
0, 0, 0,..., 0,

n+1
i , 0, 0,...)}

={p(
0, 1, 2
i, i, i ,..., i,

n
i, 0, 0,...)}. (38)

Note also that, by construction all the points in Gn−1, i can be written as
p(x0, x1,..., xn, 0, 0,...) with xn=i, those in Gn−1 as p(x0,..., xn, 0, 0,...) with
xn=0, and those in i

−1
n, i(Gn−1) as p(x0,..., xn, xn+1, 0,...) with xn=0 and

xn+1=i.

Proposition 16. Rn, i and R̃n, i are 1 : 1 maps. Moreover, the follow-
ing hold.

(i) If x ¥ Gn−1 then R̃n, i(x) ¥ i
−1
n, i(Gn−1).

(ii) If (x, y) ¥ Bn−1, then (R̃n, i(x), R̃n, i(y)) ¥ B.
(iii) If x ¥ Gn−1 5 Gn−1, i then Rn, i(x)=R̃n, i(x).
(iv) If x ¥ Gn then Rn, i(x) ¥ Gn.
(v) If x ¥ Gn−1, i 5 1j ] 0, i Gn−1, j then Rn, i(x)=x.
(vi) If (x, y) ¥ Bn−1, i then (Rn, i(x), Rn, i(y)) ¥ B.

Define n: W (0)
Q Z+ 2 {.} by

n(w)=min{n ¥ Z+ 2 {.} | w(k) ¥ Gn, k=0, 1, 2,..., L(w)}, w ¥W (0).
(39)
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Note the obvious relation

2n(w)−1 < L(w) E d(d+1)n(w), w ¥W (0). (40)

(The second inequality is because there are (d+1)n unit simplices in Fn, and
within each unit simplex a self-avoiding walk can spend at most d steps.)
For each self-avoiding path w ¥W (0) satisfying |w(L(w))| < 2n(w)−1, we

want to assign a self-avoiding path R(w) ¥W (0) (‘‘reflected path’’) such that
|R(w)(L(R(w)))| > 2n(R(w))−1 (the left hand side stands for the Euclidean
distance of the endpoints of R(w)). This is possible using (35) and (36), as
follows.
Given w=(w(0), w(1),..., w(L(w))) ¥W (0) with the property

w(L(w)) ¥ Gn−1<0
d

i=1
Gn−1, i, where n=n(w), (41)

we shall define a path R(w) as follows.
Let T(w) be a positive integer satisfying

w(k) ¥ Gn−1, T(w) E k E L(w), and w(T(w)−1) ¨ Gn−1.

The condition (41) implies that such an integer (uniquely) exists. Since
w(T(w)) ¥ Gn−1, w(T(w)−1) ¥1d

i=1Gn−1, i. Let i(w) ¥ {1, 2,..., d} be such
that w(T(w)−1) ¥ Gn−1, i(w). Clearly, such an integer is also unique. Also the
definitions of T(w) and i(w) imply

w(T(w)) ¥ Gn−1 5 Gn−1, i(w). (42)

Define R(w) by

R(w)(k)=˛Rn, i(w)(w(k)), 0 E k < T(w),
R̃n, i(w)(w(k)), T(w) E k E L(w).

Theorem 17. For each w ¥W (0) satisfying |w(L(w))| < 2n(w)−1,
R(w) ¥W (0) (i.e., is a self-avoiding path starting from O) which satisfies
L(R(w))=L(w), n(R(w))=n(w)+1, and 2n(w) < |R(w)(L(w))|.
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